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INTRODUCTION

Largely as a consequence of advances in computer technology

"the use of time series analysis methodology to investigate

• "- correlations of brain electrical activity with clinical disorders

has become an area of intense effort in many EEG research lab-

oratories. The primary objective of many of these investigations

"is the detection of EEG 'time series properties which offer a

quantitative basis for aiding diagnosis of mental illne-3s or'brain

injury. This chapter describes the speciul eiectzophysioloyical

tests which we have been dk-veloping at TRIMS* for application to

'research pojevts concerned with the detection of EEG properties

which correlate with part-4cular abnormalities such as uncontrollsd

violent behavior, learning disabilities and epilepsy.

WAI~N SPIKING #

intermittent deep br-ain eloctvicat spikirq as well as scalp

E.. spi"• p ing has been iml -. uated in crtain brain and behavioral

disorders such as epilepsy )ina uncontrolled violent behavior.

The onr'elattio of abnormal deep brain electrical spiking activity

with violent behavior has been demonstrated in nonhuman primate

studies )by employing invasive methods wnich involve the surgical "

implantation of electrodes and subsequent analysis of the electri-

cal activity recorded from the implanted deep brain structuros. Aecoqlon For

• :In light of those results, a Aignificant advancement in the

,•I "*Toxzts RoSoarch Institute of Nental Sciences .. ..
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,.dianosisof abnormal brain activity, especially that deep brain

activity associated with persons exhibiting uncontrolled violent

be'iavior, would be achieved by the development of detection

methods that are noninvasive and therefore applicable in ordinary

clinical EEG settings.

Our ZEG research on noninvasive detection was stimulated

primarily by the initial finding of complex patterns of consistent

waveshape in scalp EEG which were time-locked to spikes recnrded

from electrodes implanted in deep brain structures of rhesus

. . monkeys. These studies have also shown that such scalp corre-

l,,tes of deep spiking can be detected even in severe EEG noise

backgrouris by the application of digital filters appropriately

designed to minimize the effects of unwanted EEG background

activity, or by special application of aepstral mnsthods in cases

where digital filters for pattern recognition are not suitable

because the pattern to be detected is not known alpriori. The

analytical methods and their potential applications are described

in references(3) (4) (5) (6)

D•ETCTION METHODS

The digital filtering procedures developed for detecting

scalp correlates of deep spiking weA based on an analysis of

monkey and human scalp EEG data obtained from reseaich projects

where simultaneous recordings from deep brain structures were

available. Using the deep spike as the triygor for avuraqing
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.scalp EEG activity, it was observed-that transient slow wave

activity frequently appeared in scalp activity at the same time

that a spike occurred at depth. The waveshape of this transient

-activity was usually distorted by the presence of noise;

therefore averaging procedures were used to achieve a better

estimate- of the transient waveshape. The power spectral density

of the scalp EEG background activity was also estimated in order

to appropriately weight the spectral components in the transient
•>.. .. waveshape obtained by averaging. The digital filter derived from

the spectral estimates of both the transient waveshape and t:ho

noise was employed as a detector which looks at scalp activity

and reports on the presence or nonpresence of transient patterns
Ui .

7No:. which match the characteristics of the digital filter. It is

interesting to note that this coincidence of deep spiking and

transient EEG slowing implies that pathological sharp spiklng

.activity at depth produces slow wave activity at the surface.

This is consistent with clinical EEC criteria which considar

focal slow activity to be an abnotmal indication.

The procedure for evaluating candidate digital filters was

based on the number of spikes detected ird normal subjects as

compared to the number of spikes Alocted in the recordig of

mentally ill subjects. In the iiitial evaluation a comparison

was made of the incidence of spikes in normala and in violent

subjects, based on a Poisson model for random spiking. In this

4j,
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model the number of spikes detected over a given length of record-

ing is compared with the expected number derived from data on

normals. The normal control is used to test the hypothesis that

a given record represents the EEG of a normal subject under the

assumption that spikes in normal subjects are uniformly randomly

w .,s.v, id 'tted. The methods of analysis underlying these evaluation

S"'procedures dependcin the performance characteristics of the digital

"filter as a-detector, as well as on the statistical model for

evaluating the significance of the number of spikes detected.

These methods are described in the next section.

.CPUKTER IMPLEMENTATION

By virtue of our computer configuration, Fourier series

methods (rather than matrix inversion methods) wore used to design

* as well as evaluate the digital filter. The Fourier methods

for the design of the optimum filter proceed as follows:

1. Obtain (a) the complex Fourier selies of the candidate

transient patterns and, (b) the power spectral density of

the signal plus noisel that is, the background EEG signal.

2. Divide th~e conjugate complex Fourier series of the

transient pattern by the power spectral density of the

W•.. ' signal plu.s noisu.
s3. Tak the inverse transform of the Fourier series obtained

In 2 which gives dimretely timolunctiuit

that is tho desired template or mataltd filter.

J [.
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In addition to performing the above operations, the computer

in our laboratory is also capable of performing running convolu-

tion. This allows continuous digital filtering of the scalp EEG

to rapidly evaluate the performance characteristics of a candidate

digital filter as a detector of abnormal transient activity.

The above analytical procedures refer to the detection of

spike induced events, but it is necessary to assign some signifi-

cance to the number of events detected in terms of background

activity and artifacts that produce false spike indications. The

major difficulty which presents itself in physiological signal

studies of this type arises from the fact that any given signal

characteristic such as a spike can and usually does appear due to

random background effects. The problem then becomes one of

determining whether the appearance of this signal characteristic

is due to background effects or to some inherent neurophysioloy-

ical abnormality in the EEG being analyzed. The analysis and

ovaluation rationale are straightforward if it is assumed that

the time interval between spike indications is random and uni-

formly distributed duo to background activity in the normal EEG. L

With the foregoing assumptions, the analysis proceeds as follows:

lot 1(n)-M probability of exactly n spikes occurring

in time t due to EEG background activity in

normal subjoct, and,
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P.(t+At) probability of exactly n s-ikws occurring

in time t+At due to EEG background activity

in normal subjects and,

X=average rate at which spikes occur in the EC-Gs

of normal control subjects;

then pn(t+At) t) (1I-XAt) + (t) t. (1) .

Equation (11 states (a) that the probability of exactly n

spikes occurring over t+At is equal to the probability that n

spikes occur over time t and none in At, plus the probability that

exactly (n-1) spikes occur over time t and exactly one in At and

that the time increment At is so small that (b) the probability of

two or more spikes occurring during At is zero, and (c) that the

probability of one spike occurring at At is tA. Rearranqinq terms,

in Equation (1), and passing to the limit as At 0 gives;

=p(t) ÷ )+pX. 1(W) . (2)

The solution of this difforenco-differential equation is the

Poisson probability density:

S.,, n- •- "(3)

The average br expected number of spike occurrences, n, during

"time t is given by:

'The variance uf spike occu•'rrces is also equal to Xt. ti):

02

•:," •,i• -,, ,
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If the actual number of spikes detected in an EEG record of

length t is N, then to test significance we need to determine the

likelihood that N or more spikes could occur in a normal EEG

record. This is given by the cumulative distribution:
0 n•

i PN(t) = (Xt) e-Xt
IVN n1n=N n!•

= - - e(4)

n=O

If N is large compared to i(=Xt), then the likelihood computed

from Equation (4) is small. If this likelihood is sufficiently

small, then we reject the hypothesis that an EEG record containing

N spikes in a time t is a normal record,

- ,- -Flor several values of spiku-count expectation, the level of

significance Associated with this hypothesis for a record with N

spike indications can be obtained from plots of the ctmulative

distribution shown in Figure 1. For example, if the expected

number oZ spikes over a given length of a normal record is 6, then

the plot shows that the probability of 18 spikes occurring in a

normal record is O.OOtL. Therefore, the hypothesis that an EZG in

which 18 spikes are detected represents a normal subject is rejected

at the 0.0001 level. The detection of 12 spikes would allow re-

jection of the hypothesis at the 0.02 level.

It should be pointed out that such statistical modeling of

mwltiple dtotion• i over lonq LEG.(; rucords it; i snasntitl bcu.-juuc III

the £alse signals, artifacts, and the many uncontrollable sources
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of physiological :iAterference that plague the evaluation of EEGs.

These statistical procedures follow and supplement the digital

filtering procedures used in designing the detector, as outlined in

the previous sections and described in our publications.

. .- . {. .
-- • [. . .' : . •:• ;•.',.. t....
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DETECTION OF SPIKE CORRELATED SCALP TRANSIENTS OF UNKNOWN WAVESHAPE.

An alternate approach to the deep spike noninvasive detection

problem is required when the recurring scalp EEG"trar.sient pattern

is of unknown waveshape. Since averaging methods for visualizing

a recurrent waveshape in noisy EEG require that the averaging pro-

"cess be synchronized by the deep spike event which can he detected

"only by invasive methods, the waveshape of the recurrent transient

is frequently unknown. Under these conditions, the methodoloyyg7• )

for detecting the presence of a recurrent complex transient in

scalp recorded brain electrical activity is based on the application

of deconvolution procedures as described below.

A recurrent transient waveform in the E can be represented

as followst

ft

At.) ): AkXý(,-r) + NM)
k-0

"AlteinaLiv.ly, (5) may be written a a ionvol#)1t ion 14iti.WL:

V0- A )1, A k 6(t'-r&) + N(t) (6)

whore desinates convolution, and

X(t) " interamittent pattern; i.e., wavoshape of recurrent

transiont

Nfl.) & B background activity

s(- k Dirac delta function at T k

'Pita decotivolution if thle convoiutlion factors ia ougtiatiot (C) 1,:

acetxallllit'ilihod in ltiovera-il ulltelon it-;L- , tliu? P7owriul-l tl-;11t!.jI1f..'tU $4



(6) gives the algebraic product of the individual Fourier trans-

forms of the intermittent pattera and the set of delta functions.t

This suggests the use of cepstral analysis which involves comn-

putation of the logarithm of the Fourier transform as a second

step and, as a third step, computation of the inverse Fourier

tranisform~ of this result to produce a function called the cep-

strum* The properties of the cepstrum will reveal the presence

of a recurrent pattern in the EEG by virtue of spikes which will

&Wpar in the cepstnum when two or more recurrences of the pattern

are ewbetded in the EMG epoch analyzed.

If the waveform characteristics are of interest, then this

methodology can also bo used to determine the shape of tho tran-

cietit jiattern. Tihis is accomplishod by smoothing the mtptatrtwi t~o

elimuinate the spikes, and then reversing all the transformationt;

used to produce the capatrum. Wowover, this is a difficult cmw

putzational problem and it is possible to circumvent those proucoureu.

if one is not interested in acartaining the shape of the paitter~n,

but *siply in detectinq whether a recurrent pattern is contained

within the time epoch analyzed. if at least two patterns aru

captured in tho data epoch, thesi analysis shows tha~ the. pawer

spectral density (PSI)) will contain ripples uhich are attriti~table

to the presence of the recurring pattorn. The assumption wider-

lying the utility of this appro~ach is that the background Pei itt

th absece of a recurrenit tcanuiunt pattern, will. poagsess a
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smooth or unrippled PSD. Figures 2 and 3 demonstrate that this

assumption holds for the EEG data recorded under "eyes open"

conditions from occipital leads during an experiment in which

transients were introduced into the background EEG by intermittent

visual stimulation. The figures show that the PSD for the no

stimulus condition is smooth (Figure 2) while the PSD for the

stimulus condition exhibits ripples (Figure 3) whose peaks arc

separated by the reciprocal of the stimulus interval.

In summary, the -Above results demonstrate that PSD analysis;

of sufficient frequency resolution to resolve ripples may provide

a tool for noninvasively diagnositg illnesses in which deep

brain electrical spiking may be a factor. More generally, the

analytical methods described in this section provide a basin, tor

investigating the clinical implications of weak recurrent tranoinut

- which are embedded in MEG backgrowid and therefore usually not

discurniblo by vinual inspection of the 9W# tliw ztorie•o.

I
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." EEG SPECTRAL COHERENCE

• •Spectral coherence analysis of the EEG provides a frequency

-dependent measure of shared* electrophysiological activity. Thus,

if linearly related (i.e., coherent) electrophysiological activity

between two EEG channels is present in a restricted portion of the

* frequency spectrum while the remainder of the spectrum contains

activity which is linearly independent (i.e., incoherent) then the

spectral coherence function by virtue of its frequency dependence,

can detect coherent activity even ir. situations where intense

levels of incoherent activity dominate the energy spectrum. Since

differences in shared EEG activity may reflect differences in

neural connectivity (i.e., communication between brain regions)

-this measure-(coherence) has been adopted by several investigators (7

* " as a logical approach to the study of brain function in projects

dealing with EEG correlates of cognition and learning disability.

PROBABILITY DISTRIBUTION OF COHERENCE ESTIMATES

The coherence function (i.e., Spectral Coherence) is defined il

* terms of the normalized cross-spectrum of two time series. The

cross-spectrum is defined as the Fourier Transform of the cross-

correlat~on function, viz:_

..*In this context shared electrophysiological activity among brain

- regions is defined as that activity at a recording site that is

related to the activity at another recording.site through a linear

transformation.

.0 , . , % • . . . . . ...
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Denote, Sl(t), S 2 (t) - different time series

)12(T) - cross-correlation function of

S 1 (t), S 2(t), where T is the variable

time shift between Si and S 2 , arid (11 2 (T)

is defined by the integral equation (7)

1 T
0)12(T) =-f SI(t) S 2 (t + -r)dt (7)

Then denote, P 1 2 (f) - cross-spectrum of SI(t), S2 (t) where P1 2 (f)

is defined by (8) , using the exponential form of the Fourier tran,;-

formation.

P1 2 (f) = f_ 1)2(T)e -i2fld (8)

(where f is frequency in hertz and T is time shift in seconds)

By substituting equation (7) into equation (8) and approlpriately

factoring the resulting double integral it can be shown that

P1 2 (f) = S 1 (f) 52(f) (c denotes cconplcx conjugate) (9)

where: S 1 (f) is the Fourier transform of S 1 (t) and "2(f) is the i

conjugate Fourier transform of S 2 4t). Note that SI(f) and

IJ2('.) are complex numbers in general and therefore so is P12 (f).

We may represent them in polar form, as follows:

S1 (f) = rle"Ol (10)
S -i2 (11)

• @2(f) = r2e

(;uIbutitut iq (10) and (II) into (9) gives the cross-spectral

density in polar form:



15

P 1 2 ( = r•r2e = r 2e (12)

.(where 61 02 e)
.Wh.le nOt-.explicitly shown, note that the r's and O's are

f t ons -off.:Nowto arrive, at the spectral coherence function

we.n-ormalize equation (12) by dividing by rl 2 and then averaginq

. vera -number of frequencies, and/or averaging .over a number of time.

-epohs.of the. two time series being analyzed.

Thus if the average is taken over 2N + 1 discrete fr'nque1-:i,,1s

we may write the spectral coherence as

00 0

where fis the center of the spectral window and unifrwigtn
0

is- used inl ~the w'dindow., If the average is taken dver M time epochs

(ensemble averaging) we may write the spectral coherence a~s

M. f (14)

;;If a combination of frequency and ensemble averaging is ustd than

ejcctral coherence may be written

! ) -......................... . ..

Ag? these expressions assume the use of uniform weihti i.

"K, " " -whe spectral window.

-t should be noted that for linearly independent signals the

pha.pe difference (44w-02) is a random function over both

., ac ..:and onsomble ;%yd theour tihe sxpocted valu as of cohuren'o

ti;-. , .v :, . .
4,:'•;i•..:,,.:.- :spetrlchrnc a e rte

• , .• ..
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"averaged over frequency and/or time (ensemble averaging) is zero.

Thus, when coherence deviates significantly from zero, one

may concl de that the two signal processes in question are related

through ,o linear transformation over the spectral region where

such sign ficant deviation occurs.

The, tatistical measure of significance of a particular

coherence estimate depends on the number of independent samples of

coherence which axe used in arriving at the coherenco estim-t•, ýind

upon the probability distribution function of these coherence

estimates as described below.

A coherence estimate is the average computed from independent

samtples o! the normalized cross-spectrum. These samples can be

. . represented a.~points on thb unit circle in the complex plane,

aa illustrated ,-n Figure 4. If thase points are uniformly

distributod over Che unit .cicle, It is cloar that the oxpected

v~tIuo of coherenco %iei at the origin (x : 0). Thu nornali;6ud

-- w snplo( of cross-spectrtm Ty be written,

X + ." coo....

The dit.Aibutio Shiown in Figure 4 ia-oeuivalont to stating

thlat theorolative phase val!,vos betwoen Sland S2 at frequency fo

* ar unifor[ly.ýraido*1v distribxted over an o nsemble of time ,pochn

_ mnod/or over-a nwmnber of frequencies in a spectra) window on teorud

at frequency . The complex valuo of cohoroanc may be writtut:

i I
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N N=

Co f) N' k= + N E k (16)k- '.-=1

Since xk and yklie on the unit circle..

k= oo88k

.11k •nOk J
the PDF (Probability .Distribution Function) of both x and y

(given that 0 is a uniformly distributed random variable) havo Iihe

same form and are given by:

D. (x) D (y) 0(7)

The corresponding means, (Cx, y) ond variances (a•2 e 2) are ..lveI by

x-Y= 0 (18)

2 2

where N = number of samples.

-r-•m (18) and (19) it follows that the mean and variance of the

Coherence magnitudo (Coo)(f0)I ') is given by:

7b O (20)

Thus, to test the hypothesis thaL and 8 2(t) are linvarlV

inidependent time series, one examines the probability thWt the

o"pirically-obtained mean, coputod from N samples, deviates fron

the oxq•ected value (zero in this case). Th number of standard

t. -A i=,••i;.i "E

• . " . •.. . • , . " *'
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-deviations by which the empirical value exceeds the expected

value determines the level of significance.

For example when the coherence magnitude, r, is obtained by

ý.;... .. a-combination of ensemble averaging over 20 epochs and frequency

averaging over 5 spectral components then

N 20 x 5100

and. the resulting standard deviation of the estimate is

.0 1.

Thus an empirically obtained value of coherence magnitude

which exceeds 0.2 would be more than two standard deviations from

the expected value for independent signals. Therefor it would be

statistically reasonable to conclude that the signals in question

•-i iare not inldeopndont, but rather that they are linearly dopendozit

i *-•o r coherent over the spectral reqion whore the coherenco magil tudo

. -eouds 0.2. At TRINS this method of coharowtce analysis has veii

applied to a pilot study of reading disabled chi1roen and normal

controls. Our imitial findings suggest that bilateral EIEG cohrernue

at froquencios above 20hasit significantly lower in reading dsbe

children than in normal readers, which may be attributable to

reduced sharing or communication between homispheros at those .

frequencies. In any event this EELG measure provides a basis for

pcmparing activity which visual examination of the EEG is incapable

of dLsuurninJj bocauwli the lower Irlquutcy asuryy which tlkciminat.n

Jl l l II
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both channels conceals the coherent relationship at high frequen-

cies. The application of coherence analysis to problems in

electrophysiology is likely to grow in importance because of the

n. need to examine the relationships among multiple channel activity

which may reveal abnormalities that cannot be found in analysis

of single channel properties of the EEG.

`4 1

--.
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Figqure 4. A cohorence .amp .v .An 1 tpint on the unit circlo

"it% tho complax plallo. h c:uharncer £7 lri'e is the lvplqg, of Such

isuiber of t, im updth.


